Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Electron Mater ; 5(2): 1013-1023, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36873261

RESUMO

Four emitters based on the naphthyridine acceptor moiety and various donor units exhibiting thermally activated delayed fluorescence (TADF) were designed and synthesized. The emitters exhibited excellent TADF properties with a small ΔE ST and a high photoluminescence quantum yield. A green TADF organic light-emitting diode based on 10-(4-(1,8-naphthyridin-2-yl)phenyl)-10H-phenothiazine exhibited a maximum external quantum efficiency of 16.4% with Commission Internationale de L'éclairage coordinates of (0.368, 0.569) as well as a high current and power efficiency of 58.6 cd/A and 57.1 lm/W, respectively. The supreme power efficiency is a record-high value among the reported values of devices with naphthyridine-based emitters. This results from its high photoluminescence quantum yield, efficient TADF, and horizontal molecular orientation. The molecular orientations of the films of the host and the host doped with the naphthyridine emitter were explored by angle-dependent photoluminescence and grazing-incidence small-angle X-ray scattering (GIWAXS). The orientation order parameters (ΘADPL) were found to be 0.37, 0.45, 0.62, and 0.74 for the naphthyridine dopants with dimethylacridan, carbazole, phenoxazine, and phenothiazine donor moieties, respectively. These results were also proven by GIWAXS measurement. The derivative of naphthyridine and phenothiazine was shown to be more flexible to align with the host and to show the favorable horizontal molecular orientation and crystalline domain size, benefiting the outcoupling efficiency and contributing to the device efficiency.

2.
Opt Express ; 30(11): 18066-18078, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221614

RESUMO

This study reported the effects of electron transport layer (ETL) thickness on light extraction in corrugated organic light-emitting diodes (OLEDs) and each layer in OLEDs exhibited a periodical corrugated structure, which was determined by depositing thin films on a glass substrate with a nanoimprinted blazed grating structure. The insight is that light extraction in corrugated OLEDs significantly depends on the ETL thickness. Varying the ETL thickness changed the distribution of carrier recombination and led to exciton formation and optical interference, thereby resulting in different attribution of optical loss modes in OLEDs, which increased or even decreased light extraction and device efficiency. Trapped light extraction from the surface plasmon polariton (SPP) and waveguide (WG) modes was identified by splitting the light into transverse electric and transverse magnetic emissions. Thus, the contributions from the individual SPP and WG modes to the external quantum efficiency (EQE) were distinctly clarified by comparing the experimental results with the theoretical calculations. At the ETL thickness of 115 nm, the corrugated OLED exhibited a significantly enhanced (1.83-fold) EQE compared to the planar one due to the effective extraction of trapped light from the SPP and WG modes. The EQE was enhanced by 0.5%, wherein 0.39% came from the WG mode and 0.11% came from the SPP mode.

3.
RSC Adv ; 11(34): 20884-20891, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35479391

RESUMO

Developing a colloidal quantum-dot light-emitting device (QDLED) with high efficiency and good reliability is necessarily preliminary for the next-generation high-quality display application. Most QDLED reports are focused on efficiency improvement, but the device operational lifetime issue is less addressed and also the relevant degradation mechanisms. This study achieved a 1.72 times elongation in the operational lifetime and a 9 times improvement in the efficiency of QDLED by inserting a hole-transporting/electron-blocking poly(9-vinylcarbazole) (PVK) layer, which prevented operational degradation on poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-secbutylphenyl))-diphenylamine)] (TFB) hole-transporting layer and also confined the electron in the QD-emitting layer. Although the TFB/PVK HTL structure is a well-known pair to enhance the device performance, its detailed mechanisms were rarely mentioned, especially for relative operational lifetime issues. Herein, a new insight behind operational lifetime elongation of QDLED is disclosed through various fundamental experiments including steady-state photoluminescence, transient electroluminescence and single-carrier only devices. Evidently, other than QD degradation, this study found that the other crucial factor that decreased the device lifetime was TFB-HTL degradation using steady-state photoluminescence and transient electroluminescence analyses. The PVK electron-only device exhibited a stable voltage value when it was driven by fixed current, which also affirmed that PVK has excellent electron-stability characteristics.

4.
ACS Appl Mater Interfaces ; 12(44): 49895-49904, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33095574

RESUMO

High-quality host materials are indispensable for the construction in the emitting layer of efficient organic light-emitting diodes (OLEDs), especially in a guest and host system. The good carrier transport and energy transfer between the host and emitters are out of necessity. In this work, a wide bandgap and bipolar organic compound, 2,2'-bis(4,5-diphenyl-(1,2,4)-triazol-3-yl)biphenyl (BTBP), conjugating two electron-transporting triazole moieties on a hole-transporting biphenyl core, was synthesized and characterized. The wide bandgap of 4.0 eV makes the promise in efficient energy transfer between the host and various color emitters to apply as the universal host, especially for blue emitters. The close electron and hole mobilities perform the same order of 10-5 cm2·V-1·s-1, identified as bipolar behavior and benefited for carrier balance at low bias. Although carrier transportation belongs to bipolar behavior at a low electrical field, the electron mobility is much faster than the hole one at a high electrical field and belongs to electron-transporting behavior. Employing the BTBP as the host matrix mixed with a phosphor dopant, iridium(III)bis[4,6-di-fluorophenyl-pyridinato-N,C2]picolinate, a high-efficiency sky-blue phosphorescent organic light-emitting diode (OLED) was achieved with a maximum current efficiency of 65.9 cd/A, maximum power efficiency of 62.8 lm/W, and maximum external quantum efficiency of 30.2%.

5.
Sci Rep ; 9(1): 3654, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842539

RESUMO

In this study, we demonstrated a blue phosphorescent organic light-emitting diode (BPOLED) based on a host with two carbazole and one trizole (2CbzTAZ) moiety, 9,9'-(2-(4,5-diphenyl-4H-1,2,4-triazol-3-yl)-1,3-phenylene)bis(9H-carbazole), that exhibits bipolar transport characteristics. Compared with the devices with a carbazole host (N,N'-dicarbazolyl-3,5-benzene, (mCP)), triazole host (3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole, (TAZ)), or a physical mixture of mCP:TAZ, which exhibit hole, electron, and bipolar transport characteristics, respectively, the BPOLED with the bipolar 2CbzTAZ host exhibited the lowest driving voltage (6.55 V at 10 mA/cm2), the highest efficiencies (maximum current efficiency of 52.25 cd/A and external quantum efficiency of 23.89%), and the lowest efficiency roll-off, when doped with bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic) as blue phosphor. From analyses of light leakage of the emission spectra of electroluminescence, transient electroluminescence, and partially doped OLEDs, it was found that the recombination zone was well confined inside the emitting layer and the recombination rate was most efficient in a 2CbzTAZ-based OLED. For the other cases using mCP, TAZ, and mCP:TAZ as hosts, electrons and holes transported with different routes that resulted in carrier accumulation on different organic molecules and lowered the recombination rate.

6.
Light Sci Appl ; 7: 17168, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839536

RESUMO

Recently, 'Liquid crystal display (LCD) vs. organic light-emitting diode (OLED) display: who wins?' has become a topic of heated debate. In this review, we perform a systematic and comparative study of these two flat panel display technologies. First, we review recent advances in LCDs and OLEDs, including material development, device configuration and system integration. Next we analyze and compare their performances by six key display metrics: response time, contrast ratio, color gamut, lifetime, power efficiency, and panel flexibility. In this section, we focus on two key parameters: motion picture response time (MPRT) and ambient contrast ratio (ACR), which dramatically affect image quality in practical application scenarios. MPRT determines the image blur of a moving picture, and ACR governs the perceived image contrast under ambient lighting conditions. It is intriguing that LCD can achieve comparable or even slightly better MPRT and ACR than OLED, although its response time and contrast ratio are generally perceived to be much inferior to those of OLED. Finally, three future trends are highlighted, including high dynamic range, virtual reality/augmented reality and smart displays with versatile functions.

7.
J Nurs Manag ; 25(6): 438-448, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28419626

RESUMO

AIM: This study investigated the extent to which the job demands and job control of nurses were related to their work-life balance. BACKGROUND: The inability to achieve work-life balance is one of the major reasons for the declining retention rate among nurses. Job demands and job control are two major work domain factors that can have a significant influence on the work-life balance of nurses. METHOD: The study measured the job demands, job control and work-life balance of 2040 nurses in eight private hospitals in Taiwan in 2013. RESULTS: Job demands and job control significantly predicted all the dimensions of work-life balance. Job demands increased the level of work-life imbalance among nurses. While job control showed positive effects on work/personal life enhancement, it was found to increase both work interference with personal life and personal life interference with work. CONCLUSION: Reducing the level of job demands (particularly for psychological demands) between family and career development and maintaining a proper level of job control are essential to the work-life balance of nurses. IMPLICATIONS FOR NURSING MANAGEMENT: Flexible work practices and team-based management could be considered by nursing management to lessen job demand pressure and to facilitate job engagement and participation among nurses, thus promoting a better balance between work and personal life.


Assuntos
Satisfação no Emprego , Enfermeiras e Enfermeiros/psicologia , Autonomia Profissional , Equilíbrio Trabalho-Vida/normas , Carga de Trabalho/normas , Adulto , Feminino , Humanos , Masculino , Inquéritos e Questionários , Taiwan , Equilíbrio Trabalho-Vida/estatística & dados numéricos , Carga de Trabalho/psicologia , Carga de Trabalho/estatística & dados numéricos
8.
ACS Appl Mater Interfaces ; 9(12): 10963-10970, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28274116

RESUMO

A new concept for organic light-emitting diodes (OLEDs) is presented, which is called exciplex-sensitized triplet-triplet annihilation (ESTTA). The exciplex formed at the organic heterojunction interface of 4,4',4″-tris(N-3-methyphenyl-N-phenyl-amino) triphenylamine and 9,10-bis(2'-naphthyl) anthracene (ADN) is used to sensitize the triplet-triplet annihilation (TTA) process on the ADN molecules. This results in a turn-on voltage (2.2 V) of the blue emission from the OLED below the bandgap (2.9 eV). From the transient electroluminescence measurement, blue emission totally came from the TTA process without direct recombination on the ADN molecules. The blue singlet exciton from the TTA process can be quenched by energy transfer to the exciplex, as revealed by transient photoluminescence measurements. This can be prevented by blocking the energy transfer path and improving the radiative recombination rate of blue emission. With the insertion of the "triplet diffusion and singlet blocking (TDSB)" layer and the incorporation of the dopant material, an ESTTA-OLED with external quantum efficiency of 5.1% was achieved, which consists of yellow and blue emission coming from the exciplex and ESTTA process, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...